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Abstract

We study 12 parameter families of two-qubit density matrices, arising
from a special class of two-fermion systems with four single-particle states
or alternatively from a four-qubit state with amplitudes arranged in an
antisymmetric matrix. We calculate the Wootters concurrences and the
negativities in a closed form and study their behavior. We use these results to
show that the relevant entanglement measures satisfy the generalized Coffman–
Kundu–Wootters formula of distributed entanglement. An explicit formula for
the residual tangle is also given. The geometry of such density matrices is
elaborated in some detail. In particular, an explicit form for the Bures metric
is given.

PACS numbers: 03.67.Mn, 03.65.Ud, 03.65.Ta

1. Introduction

Entanglement is the basic resource of quantum information processing [1]. As such it has
to be quantified and its structure characterized. For entanglement quantification one uses
special classes of entanglement measures which are real-valued functions on the states. Pure
and mixed state entanglement and its quantification in its bipartite form is a well-understood
phenomenon. Moreover, on the geometry and structure of entangled states associated with
such systems a large number of interesting results are available [2].

For example, for pure states of bipartite systems the classification of different entanglement
types is effected by the Schmidt decomposition. If the Schmidt decomposition is known,
from the Schmidt numbers one can form the von-Neumann entropy [3] as a good measure
characterizing bipartite entanglement. For quantifying mixed state entanglement no such
general method exists. For the special case of two qubits as a measure of entanglement we
have the celebrated formula of Hill and Wootters [4] for the bipartite concurrence C and
the associated entanglement of formation. The structure of this measure of entanglement
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was studied in many different papers1. Its structure has been related to antilinear operators
[5], combs and filters [6], and has also been generalized to rebits [7]. Explicit expressions
for different special classes of density matrices and a comparison with other measures of
entanglement have been given [8–10].

In this paper we would like to study the structure of special 12-parameter families of two-
qubit density matrices for which the mixed state concurrences can be calculated in a closed
form. Such density matrices can be regarded as reduced ones coming from some larger system
with special properties. In order to motivate our choice for this larger system we consider
an example. If we consider a three-qubit state |ψ〉 ∈ C2 ⊗ C2 ⊗ C2, then after calculating
any of the reduced density matrices, e.g., �12 = Tr3(|ψ〉〈ψ |) we are left with a two-qubit
density matrix of a very special structure. For example in this case �12 is of rank two, and
this observation enables an explicit calculation of the mixed state concurrence in terms of
the amplitudes of the three-qubit state |ψ〉. This result forms the basis of further important
developments, namely the derivation of the Coffman–Kundu–Wootters relation of distributed
entanglement [11].

Proceeding by analogy we expect that four-qubit states of special structure might provide
us with further interesting examples of that kind. Let us consider a four-qubit state
|�〉 ∈ C2 ⊗ C2 ⊗ C2 ⊗ C2. A class of two-qubit density matrices arises after forming
the reduced density matrices such as �12 = Tr34(|�〉〈�|). However, density matrices of that
kind are still too general to have a characteristic structure. Hence as an extra constraint we
impose an antisymmetry condition on the amplitudes of

|�〉 =
1∑

ijkl=0

�ijkl|ijkl〉, (1)

as

�ijkl = −�klij , (2)

i.e., we impose antisymmetry in the first and second pairs of indices.
An alternative (and more physical) way is the one of imposing such constraints on the

original Hilbert space H � C16 which renders to have a tensor product structure on one of its
six dimensional subspaces H of the form

H = (C2 ⊗ C2) ∧ (C2 ⊗ C2), (3)

where ∧ refers to antisymmetrization. As we know quantum tensor product structures are
observable-induced [12], hence in order to specify our system with a tensor product structure of
equation (3) we have to specify the experimentally accessible interactions and measurements
that account for the admissible operations we can perform on our system. For example we
can realize our system as a pair of fermions with four single-particle states where a part of the
admissible operations is local unitary transformations of the form

|�〉 �→ (U ⊗ V ) ⊗ (U ⊗ V )|�〉, U, V ∈ U(2), |�〉 ∈ H. (4)

Taken together with equation (2) this transformation rule clearly indicates that the first, second,
third and fourth subsystems form two indistinguishable subsystems of fermionic type.

The aim of the present paper is to study the interesting structure of the reduced density
matrices of the form �ij , i < j, i, j = 1, 2, 3, 4, arising from fermionic states that are elements
of the tensor product structure as shown by equation (3). We can alternatively coin the term
that these density matrices are those with fermionic purifications.

1 For a nice summary see the relevant chapter of [2].
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The organization of the paper is as follows. In section 2 we present our parametrized
family of density matrices we wish to study. Using suitable local unitary transformations we
transform this family to a canonical form. In section 3 based on these results we calculate the
Wootters concurrence, the negativity and the purity. We give a formula for the upper bound
of negativity for a given concurrence. (We prove it in appendix.) In section 4 we analyze
the structure of these quantities and discuss how they are related to each other. In particular,
we prove that the relevant entanglement measures associated with our four-qubit state satisfy
the generalized Coffman–Kundu–Wootters inequality of distributed entanglement [13]. For
the residual tangle we derive an explicit formula, containing two from the four algebraically
independent four-qubit invariants. In section 5 we investigate the Bures geometry of this
special subclass of two-qubit density matrices. We show that thanks to our purifications being
fermionic an explicit formula for the Bures metric with a hyperbolic structure can be obtained.
The conclusions and some comments are left for section 6.

2. The density matrix

Let us parametrize the six amplitudes of our normalized four-qubit state |�〉 of equation (1)
with the antisymmetry property of equation (2) as

�ijkl = 1
2 (εikAj l + Bikεjl), (5)

where A and B are symmetric matrices of the form

A =
(

z1 − iz2 −z3

−z3 −z1 − iz2

)
= ε(zσ), B =

(
w1 − iw2 −w3

−w3 −w1 − iw2

)
= ε(wσ), (6)

where z, w ∈ C3, wσ = w1σ1 + w2σ2 + w3σ3, with the usual σi Pauli matrices,

ε =
(

0 1
−1 0

)
(7)

and the overline refers to complex conjugation.
It is straightforward to check that the normalization condition of the state |�〉 takes the

form

‖�‖2 ≡ ‖w‖2 + ‖z‖2 := 1. (8)

The density matrices we wish to study are arising as reduced ones of the form

� ≡ �12 = Tr34(|�〉〈�|). (9)

Note that since the subsystems (12) and (34) are by definition indistinguishable we also have
� = �12 = �34.

A calculation of the trace yields the following explicit form for �,

� = 1
4 (1 + �), (10)

where 1 denotes the 4 × 4 identity matrix and � is the traceless matrix

� := xσ ⊗ I + I ⊗ yσ + wσ ⊗ zσ + wσ ⊗ zσ, (11)

x := iw × w, y := iz × z, (12)

where I is the 2 × 2 identity matrix. Note that x, y ∈ R3 and xw = xw = yz = yz = 0. Due
to this, and the identities

|x|2 = ‖w‖4 − w2w2, |y|2 = ‖z‖4 − z2z2, (13)

3
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it can be checked that � satisfies the identity

�2 = (1 − η2)1, (14)

where

η ≡ |w2 − z2|, (15)

0 � η � 1. (16)

Note that the quantity η is just the Schliemann-measure of entanglement for two-fermion
systems with four single-particle states [14, 15]. Indeed, our density matrix � (with a somewhat
different parametrization) can alternatively be obtained [15] as a reduced one arising from such
fermionic systems after a convenient global U(4), and a local U(2) × U(2) transformation of
the form I ⊗ σ2.

Now by employing suitable local unitary transformations we would like to obtain a
canonical form for �. According to equation (4) the transformations operating on subsystems
12 or equivalently 34 are of the form U ⊗ V ∈ U(2) × U(2).

As a first step let us consider the unitary transformation

U(û, α) := ei α
2 ûσ = cos

(
α

2

)
I + i sin

(
α

2

)
ûσ, (17)

which is a spin- 1
2 representation of an SU(2) rotation around the axis û ∈ R3 (|û| = 1) with

an angle α. A special rotation from x to x′ (x′ = −x) can be written as

U(û, α)†(xσ)U(û, α) = x′σ, (18)

U(û, α) = 1√
2x2(x2 + xx′)

(x2I + (xσ)(x′σ)), (19)

û = x × x′

|x × x′| , α = arccos

(
xx′

xx

)
. (20)

Employing this, we can rotate the vector x to the direction of the coordinate axis z. In
this case

r := |x|, (21)

Ux := 1√
2r(r + x3)

(rI + (xσ)σ3), (22)

U †
x(xσ)Ux = rσ3. (23)

Moreover, using equation (19) it can be checked that due to the special form of x (see
equation (12)), the above transformation rotates the third component of w into zero

U †
x(wσ)Ux = w′σ, (24)

w′ = w − wx′

r2 + xx′ (x + x′) =

⎡
⎢⎣

w1 − x1
r+x3

w3

w2 − x2
r+x3

w3

0

⎤
⎥⎦ . (25)

A similar set of transformations can be applied to yσ

s := |y|, (26)
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Vy := 1√
2s(s + y3)

(sI + (yσ)σ3) , (27)

V †
y (yσ)Vy = sσ3. (28)

V †
y (zσ)Vy = z′σ, (29)

z′ = z − zy′

s2 + yy′ (y + y′) =

⎡
⎢⎣

z1 − y1

s+y3
z3

z2 − y2

s+y3
z3

0

⎤
⎥⎦ . (30)

Obviously, every U ∈ U(2) unitary transformation acting on an arbitrary a ∈ C3 as
U †aσU = a′σ preserves a2 and ‖a‖2, since a2 = − det(aσ), and ‖a‖2 = 1

2 Tr((aσ)†(aσ)).
Hence

w′2 = w2, z′2 = z2, (31)

‖w′‖2 = ‖w‖2, ‖z′‖2 = ‖z‖2 (32)

and

η′ = η (33)

are invariant under local U(2) × U(2) transformations. (The entanglement measure η is also
invariant under the larger group of U(4) transformations.)

Now by employing the local U(2) × U(2) transformations Ux ⊗ Vy, our density matrix
can be cast into the form,

�′ = (Ux ⊗ Vy)
†�(Ux ⊗ Vy) = 1

4 (1 + �′), (34)

�′ = rσ3 ⊗ I + I ⊗ sσ3 + w′σ ⊗ z′σ + w′σ ⊗ z′σ, (35)

where �′ has the special form

�′ =

⎡
⎢⎢⎢⎢⎣

α3 0 0 α1 − iα2

0 β3 β1 − iβ2 0

0 β1 + iβ2 −β3 0

α1 + iα2 0 0 −α3

⎤
⎥⎥⎥⎥⎦ (36)

with the quantities α, β ∈ R3 defined as

α =
⎡
⎣ξ1 − ξ2

ζ1 + ζ2

r + s

⎤
⎦ , β =

⎡
⎣ξ1 + ξ2

ζ1 − ζ2

r − s

⎤
⎦ , (37)

ξ1 = w′
1z

′
1 + w′

1z
′
1, ζ1 = w′

2z
′
1 + w′

2z
′
1, (38)

ξ2 = w′
2z

′
2 + w′

2z
′
2, ζ2 = w′

1z
′
2 + w′

1z
′
2. (39)

Thanks to the special shape of �, we can regard �′ as the direct sum of two 2 × 2 blocks, i.e.
(I + ασ) and (I + βσ). Having obtained the canonical form of our reduced density matrix �,
now we turn to the calculation of the corresponding entanglement measures.

5



J. Phys. A: Math. Theor. 41 (2008) 505304 S Szalay et al

3. Measures of entanglement for the density matrix

3.1. Concurrence

In this section we calculate the Wootters concurrence of our density matrix � defined in
equations (10)–(12). This quantity is defined as

C = max{0, λ1 − λ2 − λ3 − λ4} (40)

where λ1 � λ2 � λ3 � λ4 are the square roots of the eigenvalues of the matrix ��̃ where

�̃ = (σ2 ⊗ σ2)�(σ2 ⊗ σ2). (41)

This matrix (the Wootters spin-flip of �) is known to have real non-negative eigenvalues.
Moreover, the important point is that C is an SL(2, C) × SL(2, C) invariant [6], hence we
can use the canonical form we obtained in the previous section via using the transformation
Ux ⊗ Vy ∈ SU(2) × SU(2) ⊂ SL(2, C) × SL(2, C) for its calculation.

It is straightforward to check that 16�′�̃′ has the same X-shape as �′, with the blocks
(α̃0I + α̃σ) and (β̃0I + β̃σ) where α̃μ, β̃ν μ, ν = 0, 1, 2, 3 are quadratic in α, β:

α̃μ =

⎡
⎢⎢⎢⎣

1 + α2
1 + α2

2 − α2
3

2α1 − i2α2α3

2α2 + i2α3α1

0

⎤
⎥⎥⎥⎦ ∈ C4, β̃ν =

⎡
⎢⎢⎢⎣

1 + β2
1 + β2

2 − β2
3

2β1 − i2β2β3

2β2 + i2β3β1

0

⎤
⎥⎥⎥⎦ ∈ C4. (42)

The eigenvalues of the blocks (α̃0I + α̃σ) and (β̃0I + β̃σ) are α̃0 ±
√

α̃2 and β̃0 ±
√

β̃
2
,

respectively. Now, we can express these with the help of the quantities α, β of (42) and get
the eigenvalues of �′�̃′ in the form

�i = {
1
16

(√
α2

1 + α2
2 ±

√
1 − α2

3

)2
, 1

16

(√
β2

1 + β2
2 ±

√
1 − β2

3

)2}
. (43)

Now, using equations (37)–(39), we have to express these as functions of our original quantities
z2, w2, ‖z‖2 and ‖w‖2. A straightforward calculation shows that

α2
1 + α2

2 = 2‖w′‖2‖z′‖2 + w′2z′2 + w′2z′2 − 2rs,

β2
1 + β2

2 = 2‖w′‖2‖z′‖2 + w′2z′2 + w′2z′2 + 2rs,

1 − α2
3 = 2‖w′‖2‖z′‖2 + w′2w′2 + z′2z′2 − 2rs,

1 − β2
3 = 2‖w′‖2‖z′‖2 + w′2w′2 + z′2z′2 + 2rs.

(44)

The formulae above are expressed in terms of quantities invariant under our transformation
yielding the canonical form (see equations (31) and (32)), hence we can simply omit the
primes. Hence by using equations (13) and (15) we can establish that

α2
1 + α2

2 = 1 − α2
3 − η2, β2

1 + β2
2 = 1 − β2

3 − η2. (45)

For further use, denote

γ+ := r + s ≡ α3, γ− := r − s ≡ β3. (46)

With these, the square roots of the eigenvalues of ��̃ are

λi =
√

�i = {
1
4

(√
1 − γ 2

+ ±
√

1 − γ 2
+ − η2

)
, 1

4

(√
1 − γ 2− ±

√
1 − γ 2− − η2

)}
. (47)

The biggest one of these is λmax = 1
4

(√
1 − γ 2− +

√
1 − γ 2− − η2

)
and after subtracting the

others from it, we get finally the nice formula for the concurrence

C(�) = max
{
0, 1

2

(√
1 − γ 2− − η2 −

√
1 − γ 2

+

)}
(48)
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with the quantities defined in equations (12), (15), (21), (26) and (46) containing our basic
parameters w and z of �. One can easily check by the definitions (46) that the surface
dividing the entangled and separable states in the space of these density matrices is a special
deformation of the η = 0 Klein-quadric [15] given by the equation

η2 = 4rs. (49)

This can also be seen from the formula (52) of negativity, see in the following subsection.

3.2. Negativity

Another entanglement-measure which we can calculate for � is the negativity. It is related
to the notion of partial transpose and the criterion of Peres [17]. It is defined by the smallest
eigenvalue of the partially transposed density matrix as follows [2, 8]:

N (�) = max{0,−2μmin}. (50)

Since the eigenvalues of a complex 4 × 4 matrix are invariant under U(4) transformation, we
can use again the SU(2) × SU(2) ⊂ U(4)-transformed �′ of equation (34).

Denote by �′T2 the partial transpose of �′ with respect to the second subsystem. This
operation results in the transformation �′T2 = rσ3 ⊗I +I ⊗sσ3 +w′σ⊗(z′σ)T +w′σ⊗(z′σ)T ,
i.e., only z′

2 changes to −z′
2. By virtue of this, retaining the definitions (38) and (39) of

ξ1, ξ2, ζ1, ζ2, and redefining α, β ∈ R3 of equation (37) as

α =
⎡
⎣ξ1 + ξ2

ζ1 − ζ2

r + s

⎤
⎦ , β =

⎡
⎣ξ1 − ξ2

ζ1 + ζ2

r − s

⎤
⎦ , (51)

the calculation proceeds as in section 3.1. The eigenvalues of �T2 are μi = {
1
4 (1 ± |α|),

1
4 (1 ± |β|)}, and a straightforward calculation shows that α2 = 1 − η2 + 4rs and
β2 = 1 − η2 − 4rs. Hence one can see that the negativity of � is

N (�) = max
{
0, 1

2

(√
1 − η2 + 4rs − 1

)}
(52)

with the usual conventions of equations (15), (21) and (26).

3.3. Comparison of concurrence and negativity

For a two-qubit density matrix we can write the following inequalities between the concurrence
and the negativity,√

(1 − C)2 + C2 − (1 − C) � N � C, (53)

which are known from a paper of Audenaert et al [8]. Our special case with fermionic
correlations may give extra restrictions between concurrence and negativity, so we can pose
the question, whether we can replace inequality (53) by a stronger one.

Figure 1 shows the result of a numerical calculation. The gray field denotes the possible
entangled states of the (10)-form on the C − N plane. The upper bound of these can be
analytically determined, and it can be proven (see the appendix) that the following inequality
holds for N : √

(1 − C)2 + C2 − (1 − C) � N � 1
2

(√
2 − (1 − 2C)2 − 1

)
� C. (54)

To see that this upper bound is the tightest, consider the special case when w = z. These states
realize the boundary, so the second inequality in (54) turns to equality. (In this case η = 0,

r = s, γ+ = 2r, γ− = 0, and for entangled states, C = 1
2 (1−√

1 − 4r2),N = 1
2 (

√
1 + 4r2−1).
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Figure 1. Range of value of negativity for a given concurrence, with its boundaries, as in (54).

These depend only on r, which can be expressed from C, thus we can express the negativity
of these states with their concurrence and get back the curve of the upper bound.)

It can be seen, by calculating the intersection of the corresponding curves of (54), that for
maximally entangled states C(�max) = 1

2 , and N (�max) =
√

2−1
2 . We can study the behavior

of these states: from the concurrence formula (48) one can see that

C = 1
2 ⇐⇒ (

η2 = 0, γ 2
− = 0 and γ 2

+ = 1
)
. (55)

The first two of these constraints hold, if and only if w2 = z2, and r = s, because of (15),
(13) and (46). If w2 = z2 then r = s and ‖w‖2 = ‖z‖2 = 1

2 are equivalent, and if r = s then
γ 2

+ = 4r2 = 1, ‖w‖4 − |w2|2 = 1
4 and it follows that w2 = 0:

C = Cmax = 1
2 ⇐⇒ (‖w‖2 = ‖z‖2 = 1

2 and w2 = z2 = 0
)
. (56)

Since the transformation (34) on � preserves the quantities appearing here, we can easily
calculate the canonical form (34) of the maximally entangled state �′. Let us choose an ansatz
of the form (25) and (30) for w′

max and z′
max as w′

max = 1√
2
[cos(α) eiϕ1 , sin(α) eiϕ2 , 0]T and

z′
max = 1√

2
[cos(β) eiψ1 , sin(β) eiψ2 , 0]T . These satisfy the first constraint of (56), and from the

second it follows that cos α = sin α = 1√
2

and ϕ1 = ϕ2 − π
2 =: ϕ and the same for z′

max:

w′
max = 1

2
eiϕ

⎡
⎣1

i
0

⎤
⎦ , z′

max = 1

2
eiψ

⎡
⎣1

i
0

⎤
⎦ . (57)

Then for the density matrix with maximal concurrence we get the expression

�′
max = 1

4

⎡
⎢⎢⎣

3
2 0 0 0
0 1 eiδ 0
0 e−iδ 1 0
0 0 0 1

2

⎤
⎥⎥⎦ , (58)

8
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with δ = ϕ − ψ being the only parameter characterizing this maximally entangled density
matrix.

3.4. Purity

The purity measures the degree of mixedness of a density matrix. For our � thanks to the
special property of � (see in equation (14)) it can easily be calculated. We have the result

Tr �2 = 1
4 (2 − η2), (59)

1
4 � Tr �2 � 1

2 (60)

by virtue of equation (16). The participation ratio is by definition

R = 1

Tr �2
= 4

2 − η2
. (61)

4. Relating different measures of entanglement

Now we would like to discuss the physical meaning of our quantities derived in the previous
section. First let us note that the

�1 = Tr234(|�〉〈�|) = Tr2(�12) = Tr2(�) = 1
2 (I + xσ) (62)

�2 = Tr134(|�〉〈�|) = Tr1(�12) = Tr1(�) = 1
2 (I + yσ) (63)

reduced density matrices describe the entanglement properties of subsystems 1 and 2 to the
rest of the system described by the four-qubit state |�〉. It is well known that the measures
describing how much these subsystems are entangled with the rest are C2

1(234) = 4Det(�1) and
C2

2(134) = 4Det(�2). Due to equations (62) and (63) these quantities are

0 � C2
1(234) = 1 − r2 � 1, 0 � C2

2(134) = 1 − s2 � 1. (64)

Clearly, since �1 = �3 and �2 = �4, we also have

C2
3(124) = C2

1(234), C2
4(123) = C2

2(134). (65)

Moreover, we already know that �12 = �34 = �. A straightforward calculation of the
two-partite density matrices �14 and �23 shows that they again have the form of equation (10)
with the sign of w being changed in the first case and the vectors w and z are exchanged in the
second. Since these transformations do not change the value of the concurrence, we have

C2
12 = C2

14 = C2
23 = C2

34. (66)

Now the only two-qubit density matrices we have not discussed yet are the ones �13 and �24.
Their form is

(�13)iki ′k′ = 1
2 (‖z‖2εikεi ′k′ + BikBi ′k′), (�24)jlj ′l′ = 1

2 (‖w‖2εjlεj ′l′ + Aj lAj ′l′). (67)

Recall now that the (4) transformation property of our four-qubit state gives rise to the
corresponding ones for the reduced density matrices

�13 �→ (U ⊗ U)�13(U ⊗ U), �24 �→ (V ⊗ V )�24(V ⊗ V ). (68)

For U,V ∈ SU(2) we have V εV t = UεUt = ε, hence the tensors occurring in equation (67)
transform as

ε �→ ε, A �→ VAV t , B �→ UBUt . (69)

9
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Using the definition (6) of A we have for example

VAV t = εV zσV t = εV zσV † = εz′σ = εz′σ, (70)

where by choosing V ≡ V
†

y of equation (27) we get for z′ the form (30). Finally these
manipulations yield for �24 the canonical form

�24 = 1

2

⎛
⎜⎜⎜⎜⎝

κ0 + κ3 0 0 κ1 − iκ2

0 ‖w‖2 −‖w‖2 0

0 −‖w‖2 ‖w‖2 0

κ1 + iκ2 0 0 κ0 − κ3

⎞
⎟⎟⎟⎟⎠ , (71)

where

κ0 = ‖z′‖2 = ‖z‖2, −κ1 = |z′
1|2 − |z′

2|2, −κ2 = 2 Re(z′
1z

′
2), −κ3 = 2 Im(z′

1z
′
2). (72)

Note that

κ2
0 = κ2

1 + κ2
2 + κ2

3 = ‖z‖4, (73)

hence the eigenvalues of �24 are ‖w‖2, ‖z‖2, 0, 0, i.e., our mixed state is of rank two. The
structure of �13 is similar to the roles of w and z exchanged. Following the same steps as in
section 3.1, we get for the corresponding squared concurrences the following expressions:

C2
13 = (‖z‖2 − |w2|)2, C2

24 = (‖w‖2 − |z2|)2. (74)

Let us now understand the meaning of the invariant η from the four-qubit point of view. It
is known that we have four algebraically independent SL(2, C)⊗4 invariants [16, 18] denoted
by H,L,M and D. These are quadratic, quartic, quartic and sextic invariants of the complex
amplitudes �ijkl , respectively. The invariants H and L are given by the expressions

H = �0�15 − �1�14 − �2�13 + �3�12 − �4�11 + �5�10 + �6�9 − �7�8 (75)

and

L = Det

⎛
⎜⎜⎝

�0 �1 �2 �3

�4 �5 �6 �7

�8 �9 �10 �11

�12 �13 �14 �15

⎞
⎟⎟⎠ , (76)

where instead of the binary one we used the decimal labeling. For the explicit form of the
remaining two invariants M and D see the paper of Luque and Thibon [16]. A straightforward
calculation shows that for our four-qubit state we have M = D = 0, however,

H = − 1
2 (z2 + w2), L = 1

16 (z2 − w2)2, (77)

hence

|L| = 1
16η2. (78)

For convenience we also introduce the quantity

σ ≡ |w2 + z2| = 2|H |. (79)

Hence η = |w2 − z2| and σ = |w2 + z2| are related to the only nonvanishing four-qubit
invariants L and H. Using the definitions of these quantities and equation (13) one can check
that

C2
13 = s2 + 1

2 (η2 + σ 2) − 2‖z2‖|w2|, C2
24 = r2 + 1

2 (η2 + σ 2) − 2‖w2‖|z2|. (80)

Hence we have the inequality

C2
13 + C2

24 � s2 + r2 + η2 + σ 2. (81)

10
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Moreover, since C2
12 = C2

14 after taking the square of equation (48) we get

C2
12 + C2

14 = 1 − r2 − s2 − 1
2η2 −

√
(1 − η2 − γ 2−)

(
1 − γ 2

+

)
. (82)

Combining this result with equations (64) and (80) we obtain

C2
12 + C2

13 + C2
14 + �1 = C2

1(234) C2
12 + C2

23 + C2
24 + �2 = C2

2(134), (83)

where

�1 = 2‖z‖2|w2| +
√(

1
2σ 2 + p+

)(
1
2σ 2 + p−

) − 1
2σ 2, (84)

�2 = 2‖w‖2|z2| +
√(

1
2σ 2 + p+

)(
1
2σ 2 + p−

) − 1
2σ 2. (85)

Here

p± = 2‖z‖2‖w‖2 ± 1
2 (4rs − η2). (86)

Note that by virtue of equation (13) p− is non-negative. Moreover according to equation (52)
for nonseparable states (�12, �14, �34, �23) we have nonzero negativity, hence 4rs > η2 and
thus p+ is also non-negative. In this case the residual tangles �1 and �2 as defined by
equations (84) and (85) are positive as they should be, hence the generalized Coffman–
Kundu–Wootters inequalities of distributed entanglement [11, 13] hold,

C2
12 + C2

13 + C2
14 � C2

1(234) C2
12 + C2

23 + C2
24 � C2

2(134). (87)

For separable states we have C12 = C14 = C34 = C23 = 0 and a calculation shows that the
inequalities (87) in the form C2

13 � C2
1(234) and C2

24 � C2
2(134) still hold with the residual tangles

�1 = 2‖z‖2(|w2| + ‖w‖2) �2 = 2‖w‖2(|z2| + ‖z‖2). (88)

Equations (84), (85) and (88) show the structure of the residual tangle. Unlike in the
well-known three-qubit case these quantities among others contain two invariants η and σ

characterizing four-partite correlations. The role of σ (which for a general four-qubit state
is a permutation-invariant) is to be compared with the similar role, the permutation invariant
three-tangle τ123 = 4|D| plays (an SL(2, C)⊗3 invariant) within the three-qubit context. (D
is Cayley’s hyperdeterminant [11].) An important difference to the three-qubit case is that
the residual tangles �1,2 seem to be lacking the important entanglement monotone property.
However, according to a conjecture [20] the sum �1 +�2 could be an entanglement monotone.
We hope that our explicit form will help to settle this issue at least for our special four-qubit
state of equations (1) and (2).

5. Bures metric

As we have emphasized our density matrix � can be regarded as a reduced density matrix of
a two-particle system on (C2 ⊗ C2) ∧ (C2 ⊗ C2), meaning

� = ��†, (89)

where � is the 4 × 4 antisymmetric matrix occurring in equation (76). In the space of such
fermionic purifications of our density matrix the curve �(t) is horizontal, when the differential
equation

�̇†� = �†�̇ (90)

holds. We can satisfy this equation by the ansatz

�̇ = G�, G = G† (91)

11
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for some G = G†, so that

d� = {G,�}. (92)

We can define the Bures metric on the space of density matrices as follows [2]:

ds2
B = 1

2 Tr(Gd�). (93)

Let us now take into account the condition �T = −�. Taking the transpose of
equation (90), we get

�T �̇†T = �̇T �†T , ��̇† = �̇�†. (94)

Using this result, we get a simpler formula for d�:

d� = �̇�† + ��̇† = 2G��† = 2G�, (95)

and to get G, we only have to invert �. A calculation of the eigenvalues of � shows that they
are of the form [15]

λ± = 1
4

(
1 ±

√
1 − η2

)
. (96)

Hence � is nonsingular iff η = 0 (i.e. iff |L| = 0). In the following we consider this case.
For nonsingular density matrices by virtue of equation (14), �−1 can be calculated easily

�−1 = 4

η2
(1 − �), (97)

hence

G = 1

2
d��−1 = 1

2η2
(d� − d��) , (98)

and the Bures metric

ds2
B = 1

4η2
Tr(d� d� − d�� d�). (99)

Since � is idempotent and traceless, one can see that the trace of the second term equals zero:
2 Tr(d�� d�) = Tr(d� d(�2)) = Tr(d� d(−η2)1) = 0. Let us introduce the quantities
fij = wizj + wizj . With this notation we have

ds2
B = 1

η2
(dxi dxi + dyj dyj + dfij dfij ). (100)

(Summation on i, j = 1, 2, 3 is implied.) Moreover, a calculation shows that η2 = 1 −
(xixi + yjyj + fijfij ), so after putting the quantities xi, yj , fij into a 15-component vector
k ∈ R15 our final result is the nice formula

ds2
B = 1

1 − k2
dk2 = 1

4
η2

[
4 dk2

(1 − k2)2

]
. (101)

Let us compare this formula with that obtained for the Bures metric of one-qubit density
matrices arising as a reduced density matrix from a pair of distinguishable qubits [19],

dl2
B = 1

4 cosh2β
(dβ2 + sinh2β d�2), (102)

where 1−C2 = tanh2β with C the pure state concurrence for two qubits, and d�2 is the usual
line element on the two-sphere S2 expressed by the angular coordinates ϑ and ϕ. Since the
space of one-qubit density matrices is the Bloch-ball B3 this parametrization provides a map
between the upper sheets of the double-sheeted hyperboloids H3 and B3. The standard metric
on H3 is just dβ2 + sinh2β d�2. Hence we see that the Bures metric is up to the conformal

12
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factor C2/4, which is just the standard metric on the upper sheet of the double-sheeted
hyperboloid H 3. However, using the stereographic projection one can show that

dβ2 + sinh2β d�2 = 4 dR2

(1 − R2)2
, (103)

where R1, R2 and R3 can alternatively be used to parametrize B3. Hence we can write

dl2
B = 1

4
C2

[
4 dR2

(1 − R2)2

]
, (104)

where the metric on the right is the standard Poincaré metric on the unit ball which is now just
the Bloch-ball. Comparing this equation with our previous expression of equation (101) we
see that it is up to the conformal factor η2/4, which is just the Poincaré metric on the Poincaré
ball B15. We emphasize, however, that unlike the usual one-qubit mixed state where all the
Bloch parameters characterizing the density matrix are independent, here the 15 parameters
associated with the vector k are subject to nontrivial constraints. These constraints describe
some nontrivial embedding of the space of nonsingular density matrices D into the Bloch-ball
B15 with our Bures metric of equation (101).

6. Conclusions

In this paper we investigated the structure of a 12-parameter family of two-qubit density
matrices with fermionic purifications. Our starting point was a four-qubit state with a
special antisymmetry constraint imposed on its amplitudes. Such states are elements of
the space (C2 ⊗ C2) ∧ (C2 ⊗ C2) and the admissible local operations are of the form
(U ⊗ V ) ⊗ (U ⊗ V ) ∈ SL(2, C)⊗4. Our density matrices are arising as the reduced ones
� = �12 = Tr34(|�〉〈�|). Since the 12 subsystem is indistinguishable from the 34 one we
have �12 = �34. We obtained an explicit form for � in terms of the six independent complex
amplitudes w and z of our four-qubit states. Employing local unitary transformations of the
form U ⊗ V ∈ SU(2) × SU(2) ⊂ SL(2, C) × SL(2, C) we derived the canonical form for
�. This form enabled an explicit calculation for different entanglement measures. We have
calculated the Wootters concurrence, the negativity and the purity. The quantities occurring
in these formulae (and some additional ones) are subject to monogamy relations of distributed
entanglement similar to those showing up in the Coffman–Kundu–Wootters relations for three
qubits. They characterize the entanglement trade-off between different subsystems. We
have the entanglement measures η and σ describing the intrinsically four-partite correlations,
quantities (Wootters concurrences) keeping track the mixed state entanglement of the bipartite
subsystems embedded in the four-qubit one. Finally, we have the independent quantities C2

1(234)

and C2
2(134) measuring how much subsystems 1 and 2 are entangled individually to the rest. We

derived explicit formulae displaying how these important quantities are related. Last we have
studied in some detail the Bures geometry underlying the structure of these density matrices.
We have shown that the constraint of antisymmetry makes it possible to obtain a nice explicit
formula for the Bures metric reminiscent of those known from hyperbolic geometry [21].
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Appendix. Upper bound of negativity

In this fermionic-correlated case, defined by equations (10)–(12) and (15), we can prove the
following inequality:

Theorem. For all entangled �:

N (�) � 1
2

(√
2 − (1 − 2C(�))2 − 1

)
. (A.1)

Proof. Insert equations (48) and (52) into (A.1):

1
2

(√
1 − η2 + 4rs − 1

)
� 1

2

(√
2 − (

1 −
√

1 − γ 2− − η2 +
√

1 − γ 2
+

)2 − 1
)
, (A.2)

after some algebra, we can rearrange the terms:

0 � 2η2 − 2 + γ 2
− + γ 2

+ − 4rs + 2
√

1 − γ 2− − η2 − 2
√

1 − γ 2
+ + 2

√
1 − γ 2− − η2

√
1 − γ 2

+ .

(A.3)

It follows from the definition (46) that γ 2
+ − 4rs = γ 2

−. With this:

0 � −(1 − γ 2
− − η2) +

√
1 − γ 2− − η2 −

√
1 − γ 2

+ +
√

1 − γ 2− − η2
√

1 − γ 2
+ . (A.4)

The right-hand side is factorizable:

0 �
(√

1 − γ 2− − η2 −
√

1 − γ 2
+

)(
1 −

√
1 − γ 2− − η2

)
. (A.5)

The second parenthesis is obviously positive. For entangled states C(�) > 0, and the first
parenthesis is proportional to the concurrence, which is strictly positive. �
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